
1

A Dynamic Design Strategy for Visual and Haptic Development

 Arthurine Breckenridge Ben Hamlet
 Interaction Laboratory1 Sandia National Laboratories
 Sandia National Laboratories brhamle@sandia.gov

 arbreck@sandia.gov

 Derek Mehlhorn Kevin Oishi
 University of Washington Carnegie Mellon University
 dtmehlh@sandia.gov ktoishi@sandia.gov

1

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under
contract DE-AC04-94-AL85000.

2
 PHANToM is a registered trademark of SensAble Technologies, Inc.

Abstract
The evolution of modern computer programming

languages comes with the need for the strategies with
which we implement them to change as well. Fully
dynamic and reusable visual and haptic simulations
are now possible given the modular nature of current
programming languages. The new standards for
simulations are dynamic applications that can load
and utilize code modules without shutting down, and
that will almost never require a complete rebuild for
new applications. Two major issues we addressed
and implemented in pursuit of this standard are:

 I. Managing the resources of one machine
II. Dynamic Human Computer Interface (HCI)

This paper discusses the limitations of current
development strategies, and presents the work done
at Sandia National Laboratories to develop an
application that will conform to the new dynamic
standards.

1. Limitations of Current Simulation
Strategies

Current Virtual Reality (VR) simulation
strategies have two major limitations. First, they do
not exceed the resources of one machine. The current
strategy for VR simulations of all kinds is to create a

specifically tailored application, from the ground up,
to accomplish a specific goal. Not only are these
applications designed to simulate only one situation
or event, but, once completed, they cannot be updated
or modified without being completely recompiled.
There are two main drawbacks to this development
strategy. The applications, or parts of them, are
difficult to reuse in future work, and the future
simulations must be almost completely re-written. A
number of attempts have been made to reduce the
need for complete program rewrites. These come in
the form of Application Programming Interfaces
(API’s).

Second, current VR strategies do not support
dynamic Human Computer Interaction (HCI). HCI
has traditionally been limited to 2-dimensional
devices like mice or keyboards. When working with
a 3-Dimensional simulation or programming
environment, working with a 2-dimensional input
device is counter intuitive and limiting to the user.
Development in the field of computer haptics has
improved HCI in a number of ways, including a much
more intuitive virtual environment. Computer haptics
has great potential in the VR field, not only for
simulation purposes but for simulation development
[1] as well. Such devices as SensAble Technologies’
Desktop PHANToM2 [2] provide a user with 6

2

degrees of freedom of motion (x, y, z, yaw, pitch,
and roll) as well as 3 degrees of force feedback (x, y,
z). Not only do haptics devices, such as the
PHANToM, allow users to interact with a computer
in 3-dimensions, but they also allow the computer to
interact with the user physically, in addition to the
standard visual feedback. These devices, being
developed into new APIs, have proven to be intuitive
and efficient in the development and interaction with
virtual environments [1,3]. The improvement of HCI
and the emergence of API’s have increased
programming productivity and reusability, proving a
more efficient and desirable design strategy is
becoming possible.

2. A Dynamic Standard

In the past, simulation development has been
limited by the linear nature of early programming
languages, such as Fortran and Cobalt. Newer
languages, such as C++ and Java, are now object
oriented, encouraging modular code development,
and support for greater code reusability. The modular
nature of current programming languages lends itself
well to a new strategy for VR and application design.

One of the limitations, needing to be addressed,
of current VR strategies is the lack of reusability.
Extremely powerful and impressive applications and
simulations have been developed as single use
applications. Therefore, these program’s
contributions to their fields are static. They cannot be
easily modified to perform different tasks, nor can
they be easily disassembled and applied directly to
another application. Current computer hardware and
software technology make possible a number of
improvements to VR development strategies,
including the ability to manage the resources of a
machine through dynamic loading.

Simulations can now be designed in a modular
nature that allows for dynamic scalability and
reusability. The new standard for VR development
should be multiple use applications that can
dynamically load new features without recompilation.
Current API’s should be designed in this manner to
increase productivity and reusability. The primary
benefit of a new dynamic standard is the reusability
and expandability that will allow for more robust and
extensive simulations than ever before. Dynamically
loadable modules can also enable the simulations to
be run on a much larger range of machines, since
users can dynamically customize the resolution, or
complexity, of the application before or during
execution. People using the simulation will only load

the modules they need or can support with their
machine. This strategy will also enable a large
number of people to develop VR simulations without
being programming or design experts.

The second improvement to current VR
development strategies that we worked with lies in
HCI. One limitation of current HCI is that, for the
most part, it is limited to a single user with a static
user interface. Currently, the means by which users
interact with their virtual environments do not change
with data needs. Therefore, in order to maximize the
breadth of an application, all conceivable features are
loaded upon execution, a method that will quickly
exceed system resources. Our implementation of a
dynamic HCI includes the ability to dynamically
change the way that one can interact with one’s
simulation environment by using a series of dynamic
menus that can be developed during runtime. The
ability for multiple users to work collaboratively over
a network in a Virtual Collaborative Environment
(VCE) would also be extremely valuable, and has
limitless potential. Productivity and quality of
products will be increased as designers and customers
collaboratively design in a VCE, even if they are
hundreds of miles apart.

3. An Implementation Example

3.1 Overview

An initial attempt to implement the new
standards of VR development, as stated above, has
commenced at Sandia National Laboratories’
Interaction Lab. The basic methods and strategies
used are applicable to more general cases of VR
development. It should be noted that the machines
used in development were little more than
commercial-off-the-shelf PC systems, readily
available to most individuals interested in the new
wave of VR development. Novint Technologies’ e-
Touch3 was used as a basis for haptics development
with Sensable Technologies’ Desktop PHANToM
device. Novint is an internet spin-off company, from
the Sandia National Laboratories’ Interaction Lab. e-
Touch is an open module effort to provide a 3D
application programming interface as well as a
graphic/haptic user interface (GHUI) to the internet
community.

3 e-Touch is a registered trademark of Novint Technologies, Inc.
 http://www.etouch3d.org

3

The project is tailored towards an architectural
design application. However, since the project is
meant to implement the new standards for haptics and
visual simulations, the application area goes far
beyond a simple CAD program. At the core of the
project is the need to manage the resources of a
machine, to dynamically add features, ranging from
rendered objects to new modules of code, without
having to exit the application. Other goals include
improving our HCI by supporting multiple users,
working collaboratively across a network, using
dynamically changing tools and interfaces.

3.2 Basic Structure

The application structure breaks down into three
major categories: objects, tools, and commands.
Objects are graphic and/or haptic items that can be
dynamically added, removed, and manipulated within
the simulation. Tools enable a user to interact with
one’s environment and with the objects therein. The
tools, except for a select few default tools, and all
objects are designed to be independent code modules
that can be dynamically loaded upon request.
Commands are code modules that are used to
interface objects and tools with the foundation of the
application.

To support expandability and dynamic loading of
different features, a series of base or template classes

exist within the foundation of the application. New
objects, tools, and commands can then be derived
from these classes, providing expandability and
compatibility. This structure also enables novice
users to implement basic features and provides
advanced users with the ability to overload the base
implementation and create unique and complex
additions to the simulation. Objects and tools are
also designed in a way that they depend only on the
lowest level of our API, Novint’s e-Touch.
Command modules are used to interface them with
specific applications. Therefore, the same objects
and tools can be reused in an infinite array of e-Touch

based applications by simply swapping out their
command modules.

Chart 1 shows the basic structure of our
application. The foundation classes consist of,
essentially, the groundwork for objects, menus, and
tools. An object is defined as anything rendered with
either graphics, haptics, or both. For our purposes in
the architectural application, objects are created to
use both styles of rendering. Tools are usually
represented by a 3D cursor, which is directly
controlled by the PHANToM for input. Tools are
used to alter the state of the application by adding,
copying, deleting, and in other ways manipulating an
object. Tools generally manipulate or change some
property of an object. Menus are completely three
dimensional, and contain 3D objects, such as buttons,

Chart 1. Shows the design structure of the application.

4

sliders, and knobs. An explanation of the menuing
system can be found in section 3.4 Menus.

At this point, it should be noted that this
project’s system of combining graphical and haptic
representations of objects did not require the
redevelopment of 3D modeling applications. The aim
is not to replace existing, proven, and refined
applications, but rather to address a new method of
efficient development that can use and improve upon
existing programs. The graphical nature of objects is
still designed using more specific, existing,
applications. The project currently uses imported 3D
Studio Max4 files to create the graphics for our haptic
objects, and contains a framework for converting
other types of 3D object files into data that can be
used by the application. Using these pre-designed
graphics, a haptic representation is either specifically
defined or generally applied based on a series of
parameters, yielding a completed haptic object.

An important concern with any system that
combines haptics and graphics data is the need for an
on disk storage system that also ties these two

representations together. This can be accomplished
through the use of a common file format that stores
both object depictions in a single file. Such a format
would allow even the most novice users to create

4
 3D Studio Max is a registered trademark of Autodesk, Inc.

simple objects, while more advanced and
knowledgeable users would still be able to create the
complex, individualized, and ornate objects they
require.

3.3 Tools

 Our application provides a dynamic and 3D
GHUI. A series of default tools allow users to
interact with their environment instantly in several
basic ways, while a series of 3D menus dynamically
reconfigure themselves to incorporate new tools
during runtime. Image 1 shows an object being
resized using one of the applications default tools.
Image 2 shows the default property manipulation
tool. Without any additions to the applications,
default tools enable users to add, delete, resize, and
manipulate object properties, while still possessing
the ability for custom tools to be loaded in at anytime
for customized interaction. This system increases
productivity, decreases lost time, and allows for a
more robust and overall user-friendly application.

The range of properties that can be manipulated is
also dynamic, allowing users to specify unique
properties that they wish to change for only select
types of objects. Currently, the application enables
manipulation of both the size and color scheme of an
object while the program is running.

Image 1. Shows an object being dynamically resized using the default resize tool.

5

In a system that allows for real-time
extendibility, it is necessary for applications to make
use of dynamic tools, and dynamic menus to interface
with these tools. It is imperative for various methods
of interacting with the virtual environment to be
added as required. This interaction should also be
able to take place in a way never imagined by the
initial developers of the system, and should not be
limited to any basic, underlying, and restricting
subsystem.

A method for completing such a task has been
implemented for this project. Several tools have been
added without restructuring or altering the foundation
of the application. An example of this is a grouping
tool, which allows users to group together any
number of objects. Then, any change made to an

object in a group is applied to all other objects in that
same group. Such tools are derived off a base tool
class, which contains only those properties common
to all tools, and a means to interface with e-Touch.
They are independent of the foundation application,
and are only specific to the very general object type
that is used throughout the application. This proves
the ability of the application, but more importantly,
the new standard of development, to allow for the
kind of extendibility warranted and required by such
an ambitious project.

3.4 Menus

A menu system is another aspect of this project.
An important part of this feature is the three
dimensional nature of the menus, whose basic
implementation is in the e-Touch API. Although
visually similar to older windowing systems, giving
them a sense of familiarity, these menus are quickly
realized to be much more functional than their 2D
counterparts. Menu objects, such as buttons and
sliders, are also in 3D. Using the PHANToM haptic
device, sliders are moved, buttons are clicked, or
knobs are turned to adjust aspects of an object. This
is a very powerful feature when coupled with a device
such as the PHANToM, as buttons and other objects
have a physical response when they are activated.

Users can feel 3D buttons being pushed, similar to
their real world equivalents, such as the buttons on a
telephone. A particularly useful example is the 3D
slider used for changing the color of an object. A
wire frame cube is used to represent all available
colors. The slider can be positioned by the user at
any point in the cube, and the object’s color is
determined by the slider’s location, see Image 2.

Image 2. Shows an object’s color property being manipulated using the default properties
tool and it’s corres pondin g dynamic menu.

6

As our particular application strives to exceed
the resources of a single machine, which basically
means it needs to be expandable at runtime, a
dynamic menuing system was built on top of a set of
default, foundation menus. An application area
where users are able to easily add a variety of objects
to the simulation is needed. This is accomplished by
way of a menu system that recognizes the addition of
new objects and enables their use. Specifically, a
particular folder in the application directory has been
set aside for storage of objects the program may use.
When a user decides to add an object, this directory is
scanned for subfolders, which are presented as
buttons on an object adding toolbar. When a button
on this toolbar is pressed, a corresponding directory
is scanned, and, dynamically, a new object selection
menu is built. Users then choose which object they
wish to add by pressing any of the buttons on the
menu. The menu is destroyed when closed, allowing
for new source files for objects to be added to the
program directory at runtime. These objects will then

be represented in the menus the next time an object is
to be added. The menuing system is depicted in
Image 3. Currently, the project has a dynamic menu
that recognizes the addition of new objects using a
general haptic object file format and allows the user

to use new objects without halting program execution.
The goal of dynamic loading without shutting down is
aimed toward being able to access features from the
internet dynamically.

3.5 Lessons Learned

Developing an application that conforms to the
new standard for visual and haptic development has
not been a small task. Although modular
programming languages allow programmers to write
code that maintains a structure that can support
dynamic loading, there is not currently a good
program that allows for dynamic loading of code
modules. The most promising is a program called
Bamboo [6]. Other options include placing code
modules within dll’s (dynamic linking libraries). This
enables both dynamic linking, adding code at the start
of execution, and dynamic loading, adding code
during execution.

In order to improve current HCI, we were working

with SensAble Technologies’ Desktop PHANToM.
During our work we discovered several limitations of
the current haptic technology. For example, a
limited range of motion potentially requires scaling of
the device motion. Other recognized haptics needs

Image 3. Shows a number of dynamic menus that make up our unique HCI.

7

involve a standard format for object property
definition. Since graphics and haptics are produced
by different output devices, a monitor versus a
PHANToM, they have always been treated as two
separate entities. Creating a standard format for
haptic object information is a necessary step in the
development and continuation of the computer
haptics field. A behavior constraint library that can
be referenced and used to define behaviors and
characteristics of specific objects is one promising
approach to a common file format. Investigation and
communication with the haptics community at large is
required for this format to be as inclusive and useful
as possible.

 Issues to consider regarding supporting multiple
users to improve and develop HCI include, but are
not limited to, network latency and the effects it has
on force feedback[5,6], and platform independence.
Haptics is difficult to successfully perform over a
network due to the high refresh rates and the
subsequent and inherent sensitivity of such
simulations. Also, because of the complicated nature
of haptics, threads are inexorably an integral part of
any simulation. Due to the often platform specific
nature of threads, this is a complex and inevitable
problem encountered with networking individuals
using various system configurations. In our goal for
reusable and modular code, platform independence is
an important obstacle to overcome.

4. Conclusions

Given the evolution of programming languages
and techniques, it is possible for more efficient and
productive VR applications to be designed. It is now
possible to exceed the resources of one’s machine and
to improve and develop current HCI methods.
Specifically, multiple use, multiple user simulations
that are composed of dynamically loadable modules,
have become a reality and present a bright future for
VR development and expansion.

An architectural design application based on and
implementing the concepts and ideas presented in this
paper is currently under development at Sandia
National Laboratories. The foundation of the

application has been completed utilizing Novint
Technologies’ haptics API e-Touch. We have been
successful in importing various unique objects from
3D Studio Max files into our simulation, and are able
to manipulate their location, orientation, and physical
properties dynamically with a number of tools that
have been written into the application foundation.
The modular, and eventually dynamically loadable,
structure of our application has also been verified
using several independent tool modules that
successfully interact with objects inside the
simulation.

The work at Sandia National Laboratories already
shows great potential for the full implementation of
the ambitious VR standards set forth in this paper.
Dynamically expandable, multiple user simulations
with a high degree of reusability are on the threshold
of reality, and are the future of VR design and
development.

5. References

[1] Anderson, Tom, “FLIGHT: A 3D Human-Computer
Interface and Application Development
Environment”, Proceedings of the Second
PHANTOM Users Group Workshop, Cambridge, MA,
1997

[2] SensAble Devices Inc., “The PHANToM” literature
from SensAble Devices Inc. 225 Court St.,
Vanceburg, KY 41179.

[3] Gutierrez T., Barbero J.I., Aizpitarte M., Carrillo A. R.,
and Eguidazu A., “Assembly Simulation Through
Haptic Virtual Prototypes”, Proceedings of the Third
PHANTOM Users Group Workshop, Cambridge, MA,
1998

[4] Matsumoto S., Fukuda I., Morino H., Hikichi K.,
Sezaki K., Yasua Y., “The Influences of Network
Issues on Haptic Collaboration in Shared Virtual
Environments”, Proceedings of the Fifth PHANTOM
Users Group Workshop, Cambridge, MA, 2000

[5] Hespanha J., McLaughlin M., Sukhatme G., Akbarian
M., Garg R., Zhu W., “Haptic Collaboration over the
Internet”, Proceedings of the Fifth PHANTOM Users
Group Workshop, Cambridge, MA, 2000

[6] Watsen K., Zyda M., “Bamboo- a portable system for
dynamically extensible, real-time, networked, virtual
environments”, Virtual Reality Annual International
Symposium. Proceedings, Atlanta, GA, 1998

